django-image-cropping Documentation
Release 1.1.0

Jonas und der Wolf

Nov 06, 2017

Contents

1 Installation 3
2 Configuration 5
3 Admin Integration 7
4 Backends 9
5 Frontend 11
5.1 easy_thumbnailS L e e e e e e e e e 11
6 ModelForm 13
7 Multiple formats 15
8 Foreign Keys 17
9 Free cropping 19
10 Disabling cropping 21
11 Settings 23
11.1 Thumbnail size L e e e e 23
11.2 Size warning o o o i e e e e e e e e e e e e e e e e 23
11.3 CustomjQUEry o o e e e 23
11.4 Custombackend e e 24
12 Troubleshooting 25
13 Changelog 27
1301 1.1 e e 27
13.2 1,044 e e e e 27
133 1.0 . e e 27
134 0.9 . e 27
13.5 0.8 o o e 28
13.6 0.7 e e e e 28

django-image-cropping Documentation, Release 1.1.0

django-image-cropping is an app for cropping uploaded images via Django’s admin backend using Jcrop.
Screenshot:

django-image-cropping is perfect when you need images with a specific size for your templates but want your users or
editors to upload images of any dimension. It presents a selection with a fixed aspect ratio so your users can’t break
the layout with oddly-sized images.

The original images are kept intact and only get cropped when they are displayed. Large images are presented in a
small format, so even very big images can easily be cropped.

The necessary fields, widgets and a template tag for displaying the cropped image in your templates are provided.

Also works with FeinCMS content types!

Contents 1

https://github.com/tapmodo/Jcrop
https://github.com/feincms/feincms

django-image-cropping Documentation, Release 1.1.0

2 Contents

CHAPTER 1

Installation

1. Install django-image-cropping using pip:

pip install django-image-cropping

By default django-image-cropping ships with an easy-thumbnails-backend which
easy—-thumbnails to also be installed and added to the INSTALLED_APPS.

The easy-thumbnails backend requires that you adjust the thumbnail processors in your settings:

requires

INSTALLED_APPS = [

'easy_thumbnails',
'image_cropping',

from easy thumbnails.conf import Settings as thumbnail_settings
THUMBNAIL_PROCESSORS (

'image_cropping.thumbnail_ processors.crop_corners',
) + thumbnail_settings.THUMBNAIL_PROCESSORS

django-image-cropping Documentation, Release 1.1.0

4 Chapter 1. Installation

CHAPTER 2

Configuration

Add an ImageRatioField to the model that contains the ImageField for the images you want to crop.

The ImageRatioField simply stores the boundaries of the cropped image. It expects the name of the associated
ImageField and the desired size of the cropped image as arguments.

The size is passed in as a string and defines the aspect ratio of the selection as well as the minimum size for the final
image:

from django.db import models
from image_cropping import ImageRatioField

class MyModel (models.Model) :
image = models.ImageField(blank=True, upload_to='uploaded images"')
size is "width x height"
cropping = ImageRatioField('image', '430x360")

You can configure a size warning if users try to crop a selection smaller than the defined minimum.

django-image-cropping Documentation, Release 1.1.0

6 Chapter 2. Configuration

CHAPTER 3

Admin Integration

Add the ImageCroppingMixin to your ModelAdmin:

from django.contrib import admin
from image_cropping import ImageCroppingMixin

class MyModelAdmin (ImageCroppingMixin, admin.ModelAdmin) :
pass

admin.site.register (MyModel, MyModelAdmin)

If your setup is correct you should now see the enhanced image widget that provides a selection area.

django-image-cropping Documentation, Release 1.1.0

8 Chapter 3. Admin Integration

CHAPTER 4

Backends

django-image-cropping delegates the cropped image generation to a backend.

A backend based on easy-thumbnails is provided, but it’s possible to use a custom backend. The
IMAGE_CROPPING_BACKEND setting expects a dotted path to a class that implements the required methods. You
can omit this setting if you want to use the default backend.

In case you use a custom backend you can provide an optional dict that will be used to populate the backend’s con-
structor params.

Default settings:

IMAGE_CROPPING_BACKEND = 'image_cropping.backends.easy_thumbs.EasyThumbnailsBackend'
IMAGE_CROPPING_BACKEND_PARAMS = {}

django-image-cropping Documentation, Release 1.1.0

10 Chapter 4. Backends

CHAPTER B

Frontend

django-image-cropping provides a templatetag for displaying a cropped thumbnail. Any other processor parameter
(like bw=True or upscale=True) will be forwarded to the backend:

{% cropped_thumbnail yourmodelinstance "ratiofieldname"
—[scale=INT|width=INT|height=INT |max_size="INTxINT"] %}

Example usage:

{$ load cropping %}

Or generate the URL from Python code in your view:

from image_cropping.utils import get_backend
thumbnail_url = get_backend() .get_thumbnail_url (
yourmodel . image,

{

'size': (430, 360),
'"box': yourmodel.cropping,
'crop': True,

'detail': True,

5.1 easy_thumbnails

You can also use the standard easy—-thumbnails templatetag with the box parameter:

% load thumbnail %}
% thumbnail yourmodel.image 430x360 box=yourmodel.cropping crop detail %}

{
{

Or generate the URL from Python code in your view:

11

django-image-cropping Documentation, Release 1.1.0

from easy_ thumbnails.files import get_thumbnailer

thumbnail_url = get_thumbnailer (yourmodel.image) .get_thumbnail ({

'size': (430, 360),
'box': yourmodel.cropping,
'crop': True,
'detail': True,
}) .url

12

Chapter 5. Frontend

CHAPTER O

ModelForm

If you want to use the cropping widget outside the admin, you’ll need to define the ImageField as an
ImageCropField:

from django.db import models
from image cropping import ImageCropField, ImageRatioField

class MyModel (models.Model) :
image = ImageCropField(blank=True, upload_to='uploaded_ images')
size is "width x height"
cropping = ImageRatioField('image', '430x360")

Alternatively, override the widget in your ModelForm (you just need to do one of these two, not both!):

from django import forms
from image_cropping import ImageCropWidget

class MyModelForm (forms.ModelForm) :
class Meta:
widgets = {
'image': ImageCropWidget,

Remember to include the form media in the <head> of your HTML:

<html>
<head>
{{ form.media }}
</head>
<body>
{{ form }}
</body>
</html>

The cropping itself happens in the ImageRatioField, the ImageCropField will still behave like a regular
ImageField.

13

django-image-cropping Documentation, Release 1.1.0

If you’re selectively including or excluding fields from the ModelForm, remember to include the
ImageRatioField.

14 Chapter 6. ModelForm

CHAPTER /

Multiple formats

If you need the same image in multiple formats, simply specify another ImageRatioField. This will allow the
image to be cropped twice:

from image_cropping import ImageRatioField, ImageCropField

image = ImageCropField(blank=True, upload_to='uploaded images')
size is "width x height"

list_page_cropping = ImageRatioField('image', '200x100")
detail_page_cropping = ImageRatioField('image', '430x360")

In your templates, use the corresponding ratio field:

load cropping %}
cropped_thumbnail yourmodel "list_page_cropping” %}

{
{

o° oo

15

django-image-cropping Documentation, Release 1.1.0

16 Chapter 7. Multiple formats

CHAPTER 8

Foreign Keys

If you need to crop an image contained within another model, referenced by a ForeignKey, the ImageRatioField

is composed of the ForeignKey name, a double underscore, and the ImageField name:

from django.db import models
from image_ cropping.fields import ImageRatioField

class Image (models.Model) :
image_field = models.ImageField (upload_to='"image/")

class NewsItem (models.Model) :
title = models.CharField (max_length=255)
image models.ForeignKey (Image)
cropping = ImageRatioField('image_ image_field', '120x100")

Cropping foreign keys only works in the admin for now, as it reuses the raw_id widget.

17

django-image-cropping Documentation, Release 1.1.0

18 Chapter 8. Foreign Keys

CHAPTER 9

Free cropping

If you do not need a fixed ratio, you can disable this constraint by setting free_crop to True. In this case the size
parameter is the desired minimum and is also used for the size-warning:

from image_cropping import ImageRatioField, ImageCropField
image = ImageCropField(blank=True, upload_to='uploaded images')

size is "width x height" so a minimum size of 200px x 100px would look like this:
min_free_cropping = ImageRatioField('image', '200x100', free_crop=True)

Use the max_s1ize parameter of the templatetag if you want to limit the display size of a thumbnail:

19

django-image-cropping Documentation, Release 1.1.0

20 Chapter 9. Free cropping

cHAaPTER 10

Disabling cropping

If you want cropping to be optional, use allow_fullsize=True as an additional keyword argument for your
ImageRatioField.

Editors can now switch off cropping by unchecking a checkbox next to the image cropping widget:

image_with_optional_cropping = ImageRatioField('image', '200x100",

allow_
—~fullsize=True)

21

django-image-cropping Documentation, Release 1.1.0

22 Chapter 10. Disabling cropping

cHAPTER 11

Settings

11.1 Thumbnail size

You can define the maximum size of the admin preview thumbnail in your settings:

size is "width x height"
IMAGE_CROPPING_THUMB_SIZE = (300, 300)

11.2 Size warning

You can warn users about crop selections that are smaller than the size defined in the ImageRatioField. When
users try to do a smaller selection, a red border appears around the image.

To use this functionality for a single image add the size_warning parameter to the ImageRatioField:

’cropping = ImageRatioField('image', '430x360', size_warning=True)

You can enable this functionality project-wide by adding the following line to your settings:

’IMAGE_CROPPING_SIZE_WARNING = True

11.3 Custom jQuery

By default the image cropping widget embeds a recent version of jQuery.

You can point to another version using the IMAGE_CROPPING_JQUERY_URL setting, though compatibility issues
may arise if your jQuery version differs from the one that is tested against.

You can also set IMAGE_CROPPING_JQUERY_URL to None to disable inclusion of jQuery by the widget. You are
now responsible for including jQuery yourself, both in the frontend and in the admin interface.

23

django-image-cropping Documentation, Release 1.1.0

11.4 Custom backend

You can define a custom backend:

’IMAGE_CROPPING_BACKEND = 'image_cropping.backends.easy_thumbs.EasyThumbnailsBackend'

You can provide an optional dict that will be used to populate the backend’s constructor:

’IMAGE_CROPPING_BACKEND_PARAMS = {'version_suffix': 'thumb'}

See the built-in backends on Backends.

24 Chapter 11. Settings

cHAPTER 12

Troubleshooting

The cropping widget is not displayed when using a ForeignKey. Make sure you do not add the corresponding
image field to raw_id_fields.

25

django-image-cropping Documentation, Release 1.1.0

26 Chapter 12. Troubleshooting

cHAPTER 13

Changelog

13.1 1.1

* Make django-image-cropping compatible with Django 1.11

13.2 1.04

* Move and encapsulate the logic for creating cropped thumbnails to a swappable backend. (@fgmacedo in #92)

13.3 1.0

“If your software is being used in production, it should probably already be 1.0.0.” (http://semver.org)

13.4 0.9

This release addresses mainly the test coverage and internal stuff.
Noteable (breaking) changes and things to be considered when upgrading from an older version:
¢ django-appconf is now used for handling defaults and settings.

— Breaking Change: JQUERY_URL changed to IMAGE_CROPPING_JQUERY_URL as part of this tran-
sition.

* The cropped_thumbnail tag is now based on Django’s simple tag.
— Breaking Change: Arguments for the the tag now need to be put in quotes.

— If you are still using Django 1.4 remember that you can’t easily use True or False as template tag
arguments.

27

https://github.com/fgmacedo
http://semver.org
https://github.com/jezdez/django-appconf
http://stackoverflow.com/q/11804315/630877

django-image-cropping Documentation, Release 1.1.0

* Any processor parameter (like bw=True or upscale=True) can be used in the cropped_thumbnail tag.

* Moved inline css to a dedicated image_cropping.css style sheet

13.5 0.8

e Minimum requirements changed to Django 1.4 and easy-thumbnails 1.4

Added Python 3 compatibility. Python 2.6 is now the minimum required Python version.

Added a free cropping option, so cropping is no longer restricted to fixed ratios.

* Removed the deprecated CropForeignKey field.

13.6 0.7

e Made the widget for the ImageCropField overwriteable to allow custom widgets. (Remember to use the
ImageCroppingMixin in the admin as the image cropping widgets are no longer implicitly set.)

» Updated Jcrop and jQuery dependencies.

* Moved docs to Read the Docs: https://django-image-cropping.readthedocs.org

28 Chapter 13. Changelog

https://django-image-cropping.readthedocs.org

	Installation
	Configuration
	Admin Integration
	Backends
	Frontend
	easy_thumbnails

	ModelForm
	Multiple formats
	Foreign Keys
	Free cropping
	Disabling cropping
	Settings
	Thumbnail size
	Size warning
	Custom jQuery
	Custom backend

	Troubleshooting
	Changelog
	1.1
	1.0.4
	1.0
	0.9
	0.8
	0.7

